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1 INTRODUCTION 

The safety of structures exposed to fire is a major 
design consideration. Appropriately designed and 
constructed concrete is one of the most fire resistant 
building materials available. However, Ordinary 
Portland Cement (OPC) based concrete, like most 
materials, deteriorates and looses strength and 
dimensional stability at high temperatures.  With the 
widespread use of high strength concrete, the risk of 
spalling and damage has significantly increased. 

Concrete suffers chemical and physical damage at 
high temperature, with permanent loss of strength 
and stiffness. For example, a 60% loss occurs after 
exposure to 600oC temperature. This permanently 
reduces the load carrying capacity of the structural 
members. 

Concrete in structures such as tunnels and col-
umns in high rise buildings require special consider-
ations since failure of such concrete in a case of fire 
can have catastrophic consequences. In this context, 
this paper explores an alternative concrete, namely 
geopolymer concrete, as a fire resistant concrete to 
be used for this application. 

2 MICROSCALE DEGRADATIONS OF OPC 
CONCRETE EXPOSED TO FIRE 

The mechanisms of microscale deterioration of con-
crete at elevated temperatures can be categorised as 
follows: 

a) Degradation and break-down of the cement 
paste; 

b) Degradation of the aggregate-paste interface, 
due to differential expansion of aggregate 
and cement pastes; and 

c) Deterioration of aggregates. 

2.1 Degradation of OPC cement paste and 
aggregate-cement interface 

The degradation of concrete, both chemically and 
physically, under the effects of high temperature ex-
posure, can be traced to changes in the phase com-
position and the micro- and macrostructure of the 
concrete as heating progresses. Changes in the 
chemical structure, weakening of the bond between 
the hardened cement paste and aggregates and dehy-
dration of the free and chemically bound water are 
some of the processes that lead to microcracking and 
subsequent changes in the porosity and strength of 
concrete when exposed to high temperatures. The 
description below outlines the various processes the 
concrete undergoes, as the temperature rises. 
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Desorption of evaporable water from the pores 
occurs up to 105oC. At 120-140oC, the calcium alu-
minosulphate hydrates of the hardened paste be-
comes dehydrated, destroying the ettringite structure 
and starting to affect  some of the  concrete strength.  
 Between 200 and 300oC, dehydration and com-
paction of the calcium silicate hydrate phases oc-
curs. New structural bonds form in the contact areas 
between the hardened cement paste and the aggre-
gates. This increases the solid phase and therefore 
the strength. Stabilisation of the strength occurs, as 
well as a slow reduction in the elastic modulus. 
 Above 400oC, substantial cracking occurs and ir-
regularly shaped pores develop in the concrete grout. 
Calcium silicate hydrates crystallise on the crack and 
pore surfaces and the macrostructure of the concrete 
grout becomes granular. The large Ca(OH)2 crystal-
line compounds in the concrete facilitate the devel-
opment of internal stresses resulting in a weakening 
of the concrete structure. The contact area between 
the hardened cement paste and the fine and coarse 
aggregate is also weakened; reducing the mi-
crostrength 30 - 50 %, compared with the values for 
the temperature range 200 - 300oC. 
 The most negative changes in the concrete struc-
ture occur above 500oC. The changes in the macro-
structure result in a colour change of the concrete to 
pink. The microstrength is 70% lower than the initial 
one, illustrating the weakening of bonds between the 
hardened cement paste and the coarse aggregates. 
This is one of the main reasons the strength is re-
duced under the effects of short-term heating and 
cooling. 
 Above 600oC, intensification of microcracks and 
the dehydration of Ca(OH)2 indicates the starting 
point for disintegration of the concrete and aggregate 
structure and eliminates the possibility of re-use af-
ter a fire. These significant changes in the structure 
of concrete have been confirmed by electron micro-
scope investigations. 

2.2 Degradation of aggregates 

The type of aggregate has a significant influence on 
the fire resistance of concrete (Harmathy 1993). It is 
well known that the strength of normal weight con-
crete depends more on the bond between the aggre-
gate and the cement paste than on the strength of the 
aggregate itself. However, at elevated temperatures, 
the bond is damaged due to differential thermal ex-
pansion of the aggregates and cement paste. Thus, 
the thermal expansion of various rocks is a very im-
portant piece of information, particularly where 
thermal compatibility between the aggregate and the 
cement is concerned. 

At room temperature, the coefficient of thermal 
expansion for most rocks is lower than that of the 
cement paste and this differential expansion causes 
damage in concrete at low temperatures (room tem-

peratures). However, at higher temperatures (above 
200oC), the cement paste shrinks with increasing 
temperatures, further increasing the differential 
thermal expansion between the aggregates and the 
cement paste. 

From the viewpoint of fire resistance, granites are 
the least favourable aggregates. They undergo inor-
dinate amounts of expansion between 650oC and 
800oC. In contrast, anorthosites appear to be ideal by 
virtue of their petrochemical stability and lower 
thermal expansion (only 1% at 950oC). 

Quartz, by virtue of its relative abundance in the 
Earth’s crust (approximately 12 %), is a widely used 
aggregate in concrete. Among its crystalline forms, 
�-quartz is the most stable at room temperature. At 
575oC, it undergoes a polymorphic inversion and 
becomes �-quartz. The inversion is accompanied by 
sudden expansion (amounting to 0.86 % by volume) 
which severely disrupts the concrete. Although un-
favourable, this is not much worse than most other 
rocks given that the cement paste matrix shrinks on 
heating and is badly cracked at 575oC, irrespective 
of the aggregate type. Another feature of quartz is 
that heat is absorbed during the polymorphic inver-
sion, but its amount is not significant enough to be 
noticeable in the performance of concrete in fire. 

Some other aggregates are also susceptible to 
physicochemical changes during heating that are po-
tentially beneficial for fire performance. The superi-
or performance of concretes made with carbonate 
aggregates, such as calcite, magnesite and dolomite, 
is commonly attributed to the absorption of heat in 
the decomposition of these minerals. Although the 
heats of decomposition are substantial (up to 1.76 
MJ kg-1), the temperature intervals of the decompo-
sition reactions (typically between 500 and 950oC) 
are too high to be of real benefit to the concrete’s 
performance. 

3 MACROSCALE DEGRATION: SPALLING OF 
CONCRETE IN FIRE 

High strength concrete is often chosen when high 
strength, low permeability and/or high elastic modu-
lus are required. However, high strength concrete is 
susceptible to a phenomenon termed spalling in fire 
(Crozier and Sanjayan, 1999). Spalling of concrete in 
fire is dislodgement of small pieces of concrete (~50 
mm) popping out from the surface of the concrete, 
sometimes explosive in nature (Figure 1).  It is pos-
sible that the entire concrete can be lost layer by lay-
er due to the spalling process.  For example, on No-
vember 18, 1996, a fire on a shuttle transporting 
trucks destroyed parts of the south tunnel of the rail-
road tunnel connecting England with France (the 
‘‘Chunnel’’). The fire caused severe damage to con-
crete tunnel rings owing to the spalling of concrete.  
Figure 2 shows a typical damage pattern in rein-
forced concrete tunnel rings as observed after the 
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Chunnel Fire (Ulm et al, 1999).  The figure illus-
trates the role of reinforcement in preventing com-
plete collapse the tunnel ring. 

Figure 1. Spalling of Concrete Tunnel Lining in Fire. 

Figure 2. Typical Damage Pattern in Reinforced Concrete 
Tunnel Rings As Observed after Chunnel Fire. 

A fire in the Great Belt tunnel in Denmark in 1995 
also caused severe spalling of concrete tunnel rings 
(Hertz, 2003). Spalling occurs between 15 to 30 
minutes after the commencement of fire (Sanjayan 
and Stocks, 1993; Crozier and Sanjayan, 2000) – a 
critical period for fire control and escape. 

Figure 3 shows a high strength column after a fire 
test.  Figure 4 shows fire induced damage due to a 
tanker-truck crash at the highway bridge at the I-
65/I-59 interchange in Birmingham, Alabama 
(Yanko 2004).  Judging from the condition of the 
steel beams, it is clear the fire temperatures did not 
reach the very high values anticipated in a hydrocar-
bon fire, possibly due to the open nature of the envi-
ronment.  However, spalling of concrete in columns 
is evident; the spalling has predominantly occurred 
in the cover concrete. 

Figure 3. Column after fire test. 

Figure 4. Fire induced damage of the highway bridge at the I-
65/I-59 interchange in Birmingham, Alabama due to a tanker-
truck fire. 

4 MECHANISMS OF SPALLING 

Spalling is widely believed to be caused by the 
steam pressure build-up in the pores of concrete in 
fire, termed moisture clog spalling, first proposed by 
Shorter and Harmathy (1961). However, a number 
of failure modes have been identified by researchers 
to fully describe the observed spalling in fire. They 
are classified into three as follows: 

a) Moisture clog spalling: first described by 
Shorter and Harmathy (1961); 

b) Spalling due to restrained thermal dilatation: 
described by Bazant (1997) and adopted by 
Ulm et al. (1999) and Nechnech et al. (2002); 

c) Thermal incompatibilities between cement 
paste and aggregates:  described by Phan et al. 
(1997). 

4.1 Moisture clog spalling 

Moisture clog spalling (Shorter and Harmathy 1961) 
occurs due to steam pressure build-up in the pores of 
the concrete.  The moisture residing in small pores 
of concrete expands as steam when heated, building 
up pressure in the pore matrix, which takes time to 
be released through the pores of concrete.  In a fire 
with rapid temperature rise (e.g. a hydrocarbon fire), 
the pressure may not have enough time to be re-
leased, and when the bursting pressure exceeds the 
tensile strength of concrete, the spalling (sometimes 
explosive) occurs.  Figure 5 shows the steam pres-
sure profile in concrete exposed to fire.  The peak 



:4: 

pressure occurs at a distance from the surface, where 
the fracture is likely to occur. 

Figure 5. Steam Pressure Development in Concrete exposed to 
Fire. 

4.2 Spalling due to restrained thermal dilatation 

Spalling due to restrained thermal dilatation was 
identified by Bazant (1997) and later adopted by 
Ulm et al. (1999) and Nechnech et al. (2002). This 
failure mode considers that the spalling results from 
restrained thermal dilatation close to the heated sur-
face, which leads to compressive stresses parallel to 
the heated surface. These compressive stresses are 
released by brittle fracture of concrete, i.e., spalling. 
Due to the volume expansion of a growing crack, 
and the slowness of release of additional water into 
the crack, the pressure in the crack must rapidly de-
cay after the crack begins to open. As a result, the 
pore pressure can play only a secondary role as far 
as the growth of a larger crack is concerned. The 
pore pressure may affect the onset of instability in 
the form of explosive thermal spalling (Figure 6).  
Figure 7 shows a slab after a fire test exposing only 
the middle region of the slab to fire, and illustrates 
this failure mode (Hertz 2003). 

Figure 6. Spalling due to restrained thermal dilatation. 

Figure 7. Spalling due to restrained thermal dilatation. 

4.3 Thermal incompatibilities between cement paste 
and aggregates 

When subjected to increasing temperature, the ce-
ment paste initially expands and when it is heated 
beyond about 300oC, it starts to rapidly contract.  
Due to thermal gradients in concrete, parts which are 
still under 300oC would be experiencing expansion 
while the other parts which are more than 300oC 
would be experiencing contraction. This competition 
between simultaneous expansion and contraction 
damages the concrete matrix. This behaviour de-
pends on the type of cement binders used. 

With increasing temperatures, most types of ag-
gregates undergo expansion.  Aggregates typically 
occupy about 60 to 80% of the total volume of con-
crete. Therefore, they have a very important effect 
on changes in volume of the concrete exposed to el-
evated temperatures. The thermal incompatibilities 
arising from expanding aggregates and contracting 
cement pastes can lead to spalling of concrete (Fig-
ure 8).  This failure mode is believed to be responsi-
ble for explosive spalling observed in many dry la-
boratory specmens. 

The most important factor affecting the expansion 
of aggregates is the mineralogical composition.  For 
instance, the thermal expansion of aggregates con-
taining quartz (SiO2) is affected by polymorphic in-
version of quartz, which occurs around 570oC. This 
causes a significant increase in expansion resulting 
in spalling of concrete.  Generally, aggregates con-
taining high silica contents are vulnerable to high 
expansions.  Aggregates with low expansions have 
low spalling risk in concrete.  The thermal character-
istics and mineralogical compositions of the aggre-
gates are important characteristics when assessing 
spalling risk. 


































































































































































































































































































































































